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Abstract

In multi-agent systems, understanding how artificial agents infer the intentions
of others is crucial for effective collaboration and competition. We investigate
the decision-making processes of neural networks in the context of the Bracket
Stamina game, a novel multiplayer generalization of the Kelly Coin Flip game,
with a focus on the concepts of Simulation Theory (ST) and Theory Theory (TT).
The game requires players to strategically manage their resources while inferring
their opponents’ decision-making processes, making it an ideal setting to study
social cognition in goal-oriented agents. We design a Deep Q Network (DQN)
that learns a favorable strategy for the game, outperforming a random policy even
with a lower points budget. To understand the extent to which the DQN can adapt
its strategy to diverse decision-making processes, we evaluate its performance
against various agent types, including human agents and simple heuristic-based
models. Our findings provide valuable insights into the representation and learning
of decision-making processes in neural networks, highlighting the potential for
developing more adaptive artificial agents in complex, socially-driven environments,
and contributing to our understanding of ST and TT in artificial systems. Our code
can be found on Github.

1 Introduction

The study of decision-making processes in artificial agents has garnered considerable attention in
recent years, particularly as these agents have been increasingly deployed in various applications,
ranging from game-playing [18] to natural language understanding [3]. One classic game used to
study decision-making and optimal resource allocation is the Kelly Coin Flip game [9], which has
been extensively researched due to its simplicity and relevance to real-world problems. In the game,
players repeatedly bet on the outcome of a weighted coin flip, aiming to maximize their wealth over
time by making smart bets. The game provides an ideal framework for studying optimal betting
strategies, risk management, and the rational resource management under uncertainty.

Despite its simplicity, the Kelly Coin Flip game has been a useful tool for understanding various
aspects of decision-making in both humans and artificial agents. The game has been employed to
study reinforcement learning algorithms and their convergence to optimal strategies [2], as well as the
impact of different types of information on decision-making processes. However, the Kelly Coin Flip
game primarily focuses on single-agent decision-making and does not directly address the challenge
of inferring the intentions of other agents in a multi-agent setting.

To bridge this gap and extend the study of decision-making processes to multi-agent systems, we
introduce the Bracket Stamina game, a novel multiplayer generalization of the Kelly Coin Flip
game. The game not only demands strategic thinking from its players but also requires them to infer
their opponents’ decision-making processes to succeed. By exploring the underlying "psychology" of
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Figure 1: This is a placeholder figure. It will be replaced with a figure depicting bracket stamina

neural networks, we aim to understand the emergent "decision-making processes" of large language
models and other artificial agents, which has broad implications in the design and deployment of
these systems in various applications.

Our primary contributions are threefold: First, we propose a novel game called "Bracket Stamina"
that extends the Kelly Coin Flip game to a multiplayer setting, where agents must not only optimize
their bet sizes but also infer the intentions of their opponents in a diverse pool of possible opponents.
Second, we develop a Deep Q Network (DQN) [11] that learns a favorable strategy for the Bracket
Stamina game, significantly outperforming a random policy even with a much lower points budget.
Finally, we evaluate the performance of the DQN when confronted with different agent types,
including human agents and simple heuristic-based models, in order to understand the extent to which
the DQN can adapt its strategy to diverse opponent decision-making processes.

Through these contributions, we hope to gain insights into the representation and learning of decision-
making processes in neural networks, paving the way for the development of more robust and adaptive
artificial agents in complex, socially-driven environments.

2 Bracket Stamina Game

The Bracket Stamina game is a multiplayer generalization of the Kelly Coin Flip game, where each
player begins with a randomly assigned number of points called "stamina". Players are placed into a
seeded, single-elimination bracket based on their number of points. In each round, two players are
paired together and have to select a number of their points to spend. If they pick a number that is
lower than their opponent’s, they are eliminated from the tournament. If they pick a number that is
higher than their opponent’s, those points are deducted from the player’s stamina and they advance to
the next round. If the two pick the same number, a winner is randomly selected.

The objective of the game is to be the last player remaining by conserving points and narrowly
defeating opponents until the last round. Table 1 presents the probability of victory for agents with
random policies as a function of their initial stamina.

3 Related Work

3.1 Iterative Games

Bracket Stamina can more specifically be described as a cross between the Kelly Coin Flip Game [9]
and the Iterated Prisoners’ Dilemma [16].

In the Kelly Coin Flip Game, a single player is given a weighted coin and a ceiling on the number
of possible flips, and can bet any amount of their current wealth on the toss of a coin. The original
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Initial Stamina Probability of Victory
5 0.003

10 0.026
15 0.063
20 0.107
23 0.155

DQN (15)* 0.144

Table 1: Probability of Victory for Random Policies. All other agents start with 15 stamina, the agent
of interest starts with the value in the lefthand column. All agents use a random policy except for the
final agent, which uses the DQN with 15 stamina.

work for this experiment was primarily focused on an exploration of rational decision-making under
a priori known values of uncertainty, and in Haghani and Dewey [9] a modified version of the Kelly
Criterion [10] as a heuristic which will hit the ceiling with high likelihood.

The Iterated Prisoners’ Dilemma [4] is a multiplayer social game where the classic prisoners’ dilemma
is played multiple rounds in a row against the same opponent. Unlike in the traditional prisoners’
dilemma, where the players converge upon a Nash equilibrium [12] encouraging both players to
always defect, in the iterated setting cooperation can outperform always defecting over time. More
importantly for our setting, Axelrod [1] showed that strong strategies could be constructed based on
the previous decisions made by a player’s opponent.

Our setting is one which bridges the gap between these two well-known games. It replaces the a
priori known uncertainty value of the Kelly Coin Flip Game with the noisy decisions made by another
agent in a social setting. In our setting, the state space is both larger and continuous compared to
the iterated prisoners’ dilemma, while maintaining a generally iterative structure which allows for
strategies to evolve over time. Fundamentally, we describe a setting where, like Axelrod [1], the
primary mechanic revolves around predicting your opponent’s action while simultaneously extending
the state space to allow for richer and more expressive emergent behaviors.

3.2 Artificial Players for Iterative Games

Artificial players for simple iterative games like the Kelly Coin-Flip Game and the Iterated Prisoners’
Dilemma have been a prominent component of research into these settings since their original
conception. Axelrod [1] pit a number of simple heuristic agents together in a large "tournament" for
iterated prisoners’ dilemma, in order to evaluate which methods produce the highest average returns.
Rapoport et al. [15] further investigates the distribution of "types" of players, the overall hostility of
the tournament, and alternative scoring metrics, all of which were shown to have a noticeable effect
on the success of different strategies.

Similar to our agent, Sandholm and Crites [17] use Q-learning as a mechanism for finding a strong
strategy for the iterated prisoners’ dilemma. In that work, cooperation is an explicitly rewarded
behavior for their model, in order to avoid an unstable learning environment. This stands in contrast
to our setting, a setting seeking to understand that very unstable environment, where responding to an
opponent’s evolving strategy and changing your own strategy in response may be considered a natural
and indeed optimal skill to learn. Likewise, this work has a much clearer, shared reward function that
all agents share (number of points accumulated in total), which again differs from our setting where
the uncertain and perhaps different incentive structure of the other agent is a critical component to
sizing your bet.

Branwen et al. [2] describes a machine learning approach to optimal play in the Kelly Coin Flip
Game, where decision trees are used to learn a value function which accounts for the winnings cap
and the number of rounds. In that work, they also describe a Generalized Kelly coin-flip game, which
randomizes and obscures the weight / winnings cap / number of rounds, turning the game into a
partially observable Markov decision process (POMDP), as well as some attempts at using deep
reinforcement learning to solve this generalized version of the game.

Some work has additionally been done for achieving superhuman play in the game Diplomacy by
combining a large language model [5] [14] with a strategic reasoning module. [6]. While large
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language models themselves are outside the scope of this work, they do highlight the need for work
on analyzing the internal states of machine learning models. While Meta’s CICERO can directly use
language to accomplish goals in a social environment, it’s unclear what the "internal representation"
of the other agents is, if such a representation even exists at all. As language model output grows
more human-like, an understanding of the perspective-taking capabilities of these models in their
interactions with humans grows to a greater degree of importance.

3.3 Simulation Theory & Theory Theory

Simulation Theory (ST) and Theory Theory (TT) are models for explaining how agents predict the
actions and internal states of other agents. With respect to artificial agents in social games, these
theories are useful a useful framework for understanding the latent and often difficult to interpret
decision-making processes.

Simulation Theory posits that humans understand others by simulating their mental states and
decision-making processes within their own minds, essentially putting themselves in the other’s
position [7]. This approach relies on the agent’s own cognitive resources and can be computationally
efficient to implement. Theory Theory suggests that humans develop abstract theories about the
mental states and decision-making processes of others, independent of their own cognitive processes
[8]. This approach can be computationally demanding but may enable a more flexible understanding
of diverse opponents.

Our setting seeks to describe a setting where traditional reinforcement learning paradigms will fail
unless all other agents follow similar strategies to the agent itself. That is, a game which requires
theory theory, rather than simulation theory. We aim to highlight a gap in "psychology" between
human players and machine players, wherein human players will immediately and naturally create
mental models of their opponents, inferring their goals, and constructing their strategies around
behaviors that they may not share themselves.

4 Methods

We next describe the methods employed in this work, detailing the training of a Deep Q Network
(DQN) to learn a favorable strategy for the game. We also discuss the difficulty in interpreting the
learned strategy and our objective to uncover whether the DQN models its opponent (constituting
TT) or simply assumes a specific policy (constituting ST).

4.1 Training the Deep Q Network

We trained a Deep Q Network (DQN) to play the Bracket Stamina game, aiming to learn a strategy
that would significantly outperform a random policy. The DQN was trained using a combination
of experience replay and target network updating. Over the course of training, the DQN learned
a strategy that outperformed an equivalent random policy by more than double (an 8.1% gain),
equivalent to a random policy with roughly 8 more points than the other agents.

However, interpreting the learned strategy proved challenging. Our goal is to uncover whether the
DQN models its opponent (in line with TT) or if it simply assumes a specific policy, either its own
or a random one (in line with ST). To achieve this, we analyze the neural network’s representations
and decisions to determine if it demonstrates a rich understanding of its opponent’s decision-making
processes or merely infers a single specific policy. What we found was that it learned a relatively
round-agnostic "phase diagram", suggesting it was learning a general strategy for the structure of the
game rather than any particular behaviors of its opponents.

5 Experiments

In this section, we run some example games with DQN agents, human agents, and a simple consistent
proportion heuristic agent. Description of these agents can be found below:

• DQN A Deep Q Network (DQN) which is trained against random policy agents and learns
to win with higher probability. To make decisions in a continuous state space, the model
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Figure 2: Simulation Theory vs Theory Theory. The crux of our work is a setting where traditional
reinforcement learning paradigms (e.g. self-play) fail to generalize to settings with mixed strategies.
Simulation theory is the dominant strategy in traditional RL settings, but our work proposes a setting
where the latter may be required for strong performance against many distinct agent types.

would instead output a percentage of its remaining points to wager, which would discretize
the state space into 100 bins rather than any floating point value. The model was trained in
PyTorch [13] on a single Nvidia 1080 Ti.

• Human Opponents Human opponents. Participants were selected from a large gaming
discord among players who already understood elimination tournaments very well.

• Consistent Proportion Heuristic A simple heuristic model loosely based on the Kelly
criterion. Select a random value between 4 and 9, and then use that proportion of your
remaining wealth every round until the final round, where you use all your remaining wealth.

Diagrams for these tournaments can be found in the appendix. Overall, the consistent proportion
heuristic placed below-average compared to the human players, the DQN placed about average
compared to human players, and the best human players consistently and significantly outperformed
the DQN models.

Two participants in particular consistently placed above the norm compared to the other participants.
When interviewed, these players specifically (1) simple "general" heuristics of betting a proportion of
wealth, and (2) building mental profiles of their opponents, and specifically adjusting their simple
heuristics around defeating them. An analogy can be drawn to Wang et al. [19], where they describe
a weak agent which can defeat superhuman go AI through an adversarial policy which does not work
on human opponents. As the players became more familiar with how the bot sized its bets, the bots
began performing substantially worse than human players.

6 Discussion

In this work, we introduced the Bracket Stamina game as a novel multiplayer generalization of the
Kelly Coin Flip game, which requires players to strategically manage their resources while inferring
their opponents’ decision-making processes. We designed and trained a Deep Q Network (DQN) to
play this game, which successfully learned a strategy that outperformed an equivalent random policy
by more than double, given the same resources. However, our experiments showed that the DQN
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Figure 3: The apparent decision-making process of our learned DQN model. While it reliably
defeats random policies at a much higher chance than random, it has some confusing emergent
decision-making. For instance, it overbets in the "phase transition" period where it transitions from a
low bet to a moderate bet, and it seems to never learn that it should spend it’s entire budget in the 4th
round.

did not generalize well when confronted with opponents from different decision-making processes,
indicating that it did not develop a rich representation of its opponents’ strategies.

Our experiments reveal in interesting nuance in the delineation between ST and TT – namely, that
decision-making processes which are constructed based on other agents’ behaviors are not necessarily
directly projecting the agent’s own policy into the other player. In this experiment, the DQN
clearly assumed all of it’s opponents would be using a random policy, and it’s own policy differed
substantially from that of a random policy. This raises the question: does ST necessarily require
projecting your own decision-making process to other agents, or is it more generally projecting your
representation of "agent policies" in general which constitutes ST? Is TT a perspective associated
with perspective-taking, or higher computational sophistication? If a model learns a rich enough
distribution of agent archetypes, and learns to identify them well, does that sufficiently advanced ST
begin to resemble TT? The line between these two descriptors of theory of mind are perhaps more
nebulous than initially hypothesized.

Much in the same way that Rapoport et al. [15] demonstrated that a varying distribution of agents in
a tournament could yield different answers for a theoretically "optimal" strategy, so too does it seem
possible that the DQN could have potentially learned a policy which hedged against the existence of
other policies in a given tournament (i.e. not all random agents). In this scenario, it could theoretically
emerge slightly more robust to the existence of agents of particular types, compared to its current
form where it will assume its opponent will make a uniformly random selection. However, important
to note is that this new policy conditioned on other agents may fail to generalize to other tournaments
much in the same way tit-for-tat failed to generalize in Rapoport et al. [15]. This highlights yet another
weakness of the DQN approach – that it’s policy is fixed, contingent upon an a priori distribution of
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adversarial policies, and that it cannot adjust it’s strategy in repeated games the way that humans or
learning-enabled agents can.

Our findings highlight the limitations of the current DQN model in adapting to diverse opponent
decision-making processes. This observation has broader implications for the understanding of large
language models (LLMs), as it suggests that LLMs may also struggle with modeling the intentions and
strategies of others when confronted with diverse or unfamiliar decision-making processes. A better
understanding of the underlying "psychology" of neural networks could lead to the development of
more robust and adaptive artificial agents, capable of effectively operating in complex, socially-driven
environments.

There are several possible directions to address the limitations observed in our study. First, incor-
porating meta-learning techniques into the DQN model may enable it to adapt more quickly to new
opponents and decision-making processes. This would allow the network to learn a more flexible
representation of its opponents’ strategies, potentially leading to better generalization.

Another possible direction is to incorporate elements of ST and TT directly into the architecture
of the neural network. This could involve designing specialized modules within the network that
explicitly model the intentions and decision-making processes of opponents, enabling the network to
make more informed predictions about their actions.

Finally, the use of unsupervised learning and representation learning techniques may help uncover
the latent structure in the decision-making processes of opponents. By learning to represent these
processes in a more structured and interpretable way, the neural network could better adapt its strategy
to diverse opponent types.

By exploring these avenues, we hope to gain a deeper understanding of the emergent decision-making
processes in neural networks, particularly in the context of large language models. This could not
only lead to more adaptive and effective artificial agents but also provide insights into the otherwise
non-interpretable representations of others in LLMs.
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Figure 4: results of human-machine mixed games. This figure will be replaced with a higher
resolution example further into the future.

A Further Details

On this page some example games with both human and machine agents can be found.

9


	Introduction
	Bracket Stamina Game
	Related Work
	Iterative Games
	Artificial Players for Iterative Games
	Simulation Theory & Theory Theory

	Methods
	Training the Deep Q Network

	Experiments
	Discussion
	Further Details

