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Abstract

Uncertainty estimation methods for classification generally fall into one of two
categories: they rely on changes in the output distribution ("Label space"), or
they rely on the representation constructed by the model, usually by pulling out
the penultimate layer prior to softmax ("Feature space"). The vast majority of
uncertainty estimation methods lie in one of these two categories, but both of
these methods fall victim to a well-known but largely-undocumented failure case:
stochastic overlapping feature values between in-distribution and out-of-distribution
data. In this work we present Layerwise Activation Similarity to Training Data
for Assessing Non-Conforming Events (LASTDANCE), a new form of anomaly
detection which is robust to these points by leveraging an input’s full trajectory
through the layers. We show that this method sets a new state-of-the-art in anomaly
detection under spurious feature overlap, despite not requiring any supervision
from out-of-distribution data.

1 Introduction

Machine Learning has revolutionized computer vision, leading to impressive results spanning a wide
variety of tasks including classification, object detection, and semantic segmentation [14]. However,
unlike hand-designed feature engineering approaches, machine learning models rely upon training
data in order to infer upon unseen data, under the assumption that the training data was independent
and identically distributed [16]. If the test data does not resemble the training data, performance
suffers as a result of a phenomenon known as Domain shift [25]. Since this data often comes
without labeled ground truth in deployed machine learning models, this effect is often invisible, and
is therefore highly important to detect when encountered.

Identifying a testing point which is out-of-distribution (OOD) in the wild after deployment is an
open problem in machine learning, and one which is of critical importance to operators leveraging
machine learning models. Understanding when a model ought to be truly confident in a point (due
to its resemblance to the training data) and when the model is simply guessing (because machine
learning models are typically overconfident out-of-distribution [7]) can mean the difference between
life and death in high-stakes scenarios.

Common methods for uncertainty estimation which are more sophisticated than model confidence
include Monte Carlo Dropout [4], ALICE [22], Trust Score [9] and others. Despite some of these
models leveraging the constructed representation [22], and others leveraging the variance of the
outputs [4] [12], both of these share a common failure case: spuriously overlapping OOD features.

This failure case has previously been informally documented [3], demonstrating that out-of-
distribution data sometimes finding it’s way into the "center" of the representation. With enough
out-of-distribution examples, this would occasionally cause it to overlap with the genuinely con-
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Figure 1: CIFAR10 (in-distribution) vs SVHN (out-of-distribution, Purple) penultimate layer features
projected down into two dimensions using UMAP [13]. Figure was generated by training a ResNet18
model, then evaluating with model.train() active in order to keep the batch normalization layers on.

structed representation for in-domain data. Note that this causes uncertainty estimation failure in both
classes of methods: if an OOD point is indistinguishable from an in-domain point, it will also have
an overconfident label output, which means it will be overconfident across all methods.

Also note that this problem is highly architecture dependent. For example, methods such as monte
carlo (MC) dropout [4] are often implemented by enabling all layers which are frequently turned off
at test time, one of which is the Batch Normalization layer [8]. Batch Normalization is a useful layer,
it improves performance [8] and aides in training models to generalize [23], but it also increases
the likelihood that out-of-distribution features are randomly overlapping with the representation
constructed of in-distribution data. It would be both useful and convenient to be able to leverage
these techniques while also being able to stay aware of out-of-distribution points, but current methods
force algorithm developers to choose one or the other: if you use MC dropout, you are significantly
increasing the chances out-of-distribution points will appear in-distribution.

Our work makes three primary contributions. First, it formally presents stochastic feature overlap as
a failure case of uncertainty estimation methods, both in feature-based and label-based uncertainty es-
timation methods. Second, it presents Layerwise Activation Similarty to Training Data for Assessing
Non-Conforming Events (LASTDANCE) as a method for detecting out-of-distribution points, even if
those points overlap in-distribution features at a layer of interest. Finally, we perform experiments
to verify the performance of LASTDANCE over current anomaly detection methods, and set a new
state-of-the-art benchmark for anomaly detection in this setting.

2 Related Work

2.1 Uncertainty Estimation

The field of uncertainty estimation is broad and deeply researched, and remains an open topic of
interest to the research community to the present day. Broadly, uncertainty estimation methods fall
into one of two categories: label-space-based estimators and feature-space-based estimators.
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Label-space-based estimators are estimators which construct an output distribution, and uses this
distribution to compute variance (and therefore a measure of uncertainty). The most prominent
among these is Monte Carlo Dropout [4]. In MC dropout, training-time dropout layers are enabled,
and the forward pass is calculated several times, creating a distribution over output space which can
be measured to generate a notion of uncertainty. As mentioned, this often underperforms with out-
of-distribution data, since batch normalization layers will "pull" those features back in-distribution
erroneously.

Feature-space-based estimators are estimators which leverage the constructed internal representation
built by the model in order to determine if a point ought to be certain or uncertain. There are a number
of methods which fall into this category, including Trust Score [9], ALICE [22] and Deep k-Nearest
Neighbors [17]. Similar in spirit to ours is [20], which takes a more directly bayesian approach
by modeling layerwise the expected distribution of parameters. While more direct, our approach
leveraging fitted gaussians upon reduced features is less computationally expensive and therefore
much more scalable.

Additional approaches to uncertainty estimation, such as test-time augmentation methods, training
strategies, weight sharing methods, etc. fall outside the scope of this work due to requiring modifi-
cation to the model architetures themselves. For more information on these methods, we refer the
reader to Gawlikowski et al 2022 [5].

2.2 Anomaly Detection

Adjacent to uncertainty estimation is the field of Anomaly detection, which seeks to identify whether
or not a point is similar to the training distribution. ODIN [12] notes that classifiers calibrated
via temperature scaling [6] will produce separated in- and out-of-distribution outputs under small
perturbations.

Mahalanobis distance is the de facto standard for anomaly detection in deep neural networks [11],
and other methods [22] leverage mahalanobis distance as a proxy for distributional uncertainty in
order to compute a more holistic estimate of uncertainty.

2.3 Layerwise Feature Selection

Early exit ensembles [24] [21] don’t preserve the best performance of the penultimate layer, so
performance goes down. OODL [1] is generally robust to stochastic feature overlap, but requires
supervision by training on out-of-distribution data, which is generally unavailable in practice and also
comes attached with no guarantees that you select the optimal OOD layer for a different distribution
which is different from both your training data and your "training OOD" data.

3 Methods

We first lay out our desiderata for an uncertainty estimate which is robust to stochastic overlap of
out-of-distribution inputs on any particular layer. First, we want to be able to predict with the best
layer with respect to in-distribution inputs, i.e. the penultimate layer. Second, we want to be able to
determine if a point is out of distribution, even if that point randomly happens to fall in-distribution
on a particular layer. Finally, we want to use this regardless of what the out-of-distribution domain
actually is: that is, given in-domain set A and out-of-domain sets B and C, we want to be reasonably
confident that both domain B and domain C reliably land out-of-distribution, compared to a method
which can only work for a known a priori OOD set.

Methods like early exit ensembles seem to function well for the second two criteria, in exchange
for damaging the performance on in-distribution datapoints by diluting the prediction from the end
of the network. Methods like OODL seem to work for the first two criteria, but require a priori
OOD data, and also do not dynamically select an optimal OOD layer for each individual point. We
propose Layerwise Activation Similarity to Training Data for Assessing Non-Conforming Events
(LASTDANCE) as a method which satisfies all three criteria.

In order to not require OOD data, we leverage the intuition that points belonging to the same class
will "ride through" the layers of a neural network together, whereas points that randomly overlap
in-distribution data will do so in an erratic manner. That is to say, it is unlikely that the trajectory
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Figure 2: The fundamental structure of LASTDANCE: leveraging a feature vector consisting of con-
catenating several reduced feature vectors from every layer, instead of the penultimate representation.

through the layers resembles that of any in-distribution point, even if that point lands in-distribution
on every layer (due to bouncing around between classes).

In order to make this trajectory computationally tractable, we fit a dimensionality reduction module
upon each layer of a neural network, such that we can get a reduced-size representation of the features
at every layer. Given n datapoints, L layers, and k dimensions from each layer, we can concatenate
the reduced feature vectors from each layer together to get a feature vector of size (n,L, k), or
flattened to (n,Lk), which represents the point’s trajectory through each of the layers. From there, we
can behave as normal; we use mahalanobis distance upon the features in order to determine whether
or not that point is out-of-distribution.

4 Experiments

We perform a series of experiments to show that anomalies are much easier to detect when leveraging
the trajectory of the features through the layers. We run experiments with and without the spurious
overlap condition, in order to examine performance with and without this case present.

We use the following datasets:

• CIFAR10 [10] CIFAR10 is a benchmark computer vision dataset containing 10 classes,
spanning natural and human-made objects. CIFAR10 is provided under the MIT License.

• SVHN [15] The Street View House Numbers (SVHN) dataset is a dataset consisting of
photographs of various numbers painted upon house number signs. SVHN was released
under the CC0 1.0 public domain license.

For all experiments, we train a model on the training set of the "in-distribution" set, and then infer
upon both the test set of the "in-distribution" set and the test set of the "out-of-distribution" set. To
artificially ensure stochastic feature overlap, we use a ResNet18 model pretrained on Imagenet [2]
with the batch norm layers enabled at test time (i.e. using model.train() for the model’s PyTorch
[18] implementation). All experiments take place on a single NVIDIA 1070TI, and code to reproduce
these experiments can be found in the supplemental material. A more complete description of the
implementation details and hyperparameters are also available in the supplemental material 1.

1Code for these experiments can be found on Github: https://github.com/ambisinister/LASTDANCE
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Figure 3: CIFAR10 (in-distribution) vs SVHN (out-of-distribution, Purple) trajectories through each
layer of ResNet18, reduced to 2 dimensions using UMAP. Despite using the same features as 1, the
out-of-distribution points cleanly cluster far apart from the in-distribution points.

Method ID Set OOD Set Mean Dist ID Mean Dist OOD

Penultimate [11] CIFAR10 SVHN 0.11 0.46
Trajectory (ours) CIFAR10 SVHN 0.09 0.63
Penultimate[11] SVHN CIFAR10 0.12 0.45
Trajectory (ours) SVHN CIFAR10 0.09 0.40

Figure 4: Mean mahalanobis Distance for in-domain (ID) data vs out-of-domain (OOD) data, scaled
between 0 and 1

The first experiment is a simple measure of different mahalanobis distance shifts for various pairs
of in-domain and out-of-domain data. We scale the distances between 0 and 1 using a scikit-learn
MinMaxScaler [19], and show that under many different shifts with stochastic overlap, the trajectories
much more significantly separate compared to using just the features from the penultimate layer.
Results for this experiment can be found in table 4.

The second experiment we show an ablation study, upon features generated by a model which does
not have spurious overlapping features between in- and out-of-distribution data. We show that in this
scenario, LASTDANCE achieves similar-or-better performance to current methods, and does not
only work when such an overlap exists. Results for this experiment can be found in table 5

Method ID Set OOD Set Mean Dist ID Mean Dist OOD

Penultimate [11] CIFAR10 SVHN 0.14 0.42
Trajectory (ours) CIFAR10 SVHN 0.08 0.68
Penultimate[11] SVHN CIFAR10 0.09 0.43
Trajectory (ours) SVHN CIFAR10 0.05 0.31

Figure 5: Mean mahalanobis Distance for in-domain (ID) data vs out-of-domain (OOD) data, scaled
between 0 and 1, with no spurious feature overlap.
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5 Discussion

In this work, we demonstrated a new method for anomaly detection which is robust to spurious overlap
of out-of-distribution features on any particular layer. Compared to other feature-based anomaly
detection methods, it works on dataset shifts which are not known a priori, and also does not force
the network to use a weaker representation for classification of in-distribution points. Dimensionality
reduction allows this method to remain computationally tractable despite leveraging multiple distinct
representations of a given input point, and uncertainty quantification of a trained neural network is
lightweight and fast after the gaussians and dimensionality reduction models have been fit on training
data features.

Aside from the obvious practical benefit of an anomaly detection method which is robust to spurious
overlap, there are a number of more subtle implications from this work. For one, with LASTDANCE
it becomes more tractable to perform uncertainty estimation upon models which specifically leverage
batch normalization layers, for example Monte Carlo Dropout [4]. In a sense, LASTDANCE is not
that fundamentally different from any other mahalanobis-based anomaly detection, but the simple
decision to construct a feature vector from all of the layers rather than focus on a single layer in
particular increases the span of available models from which reasonable uncertainty estimation would
be possible.

Future work will revolve around methods of calculating trajectories without destroying as much
information in each layer. For example, one method which warrants further study is scaling every
feature vector to unit length, calculating class conditional unit vectors, and then calculating cosine
distance between the scaled unit feature vector of each layer for a given point. Since the volume
of a ball in high dimensions is concentrated near its shell, scaling each vector to unit length could
potentially destroy less information than projecting down to two dimensions, and cosine distance
between two vectors would neatly yield a scalar value for the degree of anomaly between a vector
and each of the other classes. Likewise, numerous small improvements are apparent: using a gaussian
mixture instead of a single gaussian, using distance to every class-conditional gaussian rather than
the single minimum, calibrating the distance beyond simply scaling it between 0 and 1, etc. All of
these could yield substantial improvements to the anomaly detection results.
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A Further Results

B Further Details

For CIFAR10 -> SVHN, the models were trained on ResNet18 pretrained with Imagenet. We trained
for 40 epochs, a batch size of 32, with a transform that resized the images to ((63, 63)). We used
cross entropy loss, and as an optimizer we used SGD with a learning rate of 0.001 and momentum of
0.9. The models, trained this way, achieve approximately 91% accuracy.

For SVHN -> CIFAR10, we use the same setup as the above, but we train for 15 epochs instead of 40.
Under this scenario, we achieve approximately 94% accuracy. For memory constraints, we take only
the first 10 thousand points from the test set, instead of the full test set, since the feature vectors from
the full test sets from SVHN and CIFAR10 do not fit in memory.

All UMAP modules project down to k = 2, purely for memory constraint reasons. We expect that
using a higher k would leave to superior results, and that using the last l < L layers instead of all L
layers could allow for a trade-off between number of layers and k size for each layer in the trajectory.
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